ISSN: 0972-3641

MUK

W= 2 phis Agb As "

200

Stochastic Modeling & Applications

EDITORS

Debasis Bhattacharya Visva-Bharati University, Santiniketan,India

Carlo Bianca Laboratorie de Physique Statistique, Paris, France Vol. 26 No. 3 (January - June, Special Issue 2022 Part - 8) UGC CARE APPROVED JOURNAL

Editor In Chief

Debasis Bhattacharya Visva-Bharati University, Santiniketan, India

Carlo Bianca Laboratorie de Physique Statistique, Paris, France

Indexing: The journal is index in UGC, Researchgate, Worldcat

Founder Editor

A.K.Basu

University of Calcutta, India

Editors

Prof . Debasis Bhattacharya Visva-Bharati University, Santiniketan,India

Carlo Bianca Laboratorie de Physique Statistique, Paris, France

Yuri E. Gliklikh

Professor of Mathematics Faculty Voronezh State University Voronezh, Russia

Prof. Sugata Sen-Roy University of Calcutta, Calcutta India

Managing Editor

Martin Bohner Missouri University of Science and Technology Rolla, Missouri USA

Editorial Board

M. Ahsanullah Rider University, USA

Elias Camouzis National and Kapodistrian University of Athens, Department of Economics, Sofokleous 1, 10559, Athens, Greece

B. Chaouchi

Energy and Smart Systems Laboratory (LESI), Khemis Miliana University, Algeria **C.C.Y. Dorea** University of Brasilia,Brazil

Khalil Ezzinbi

Cadi Ayyad University, Faculty of Sciences Semlalia, Department of Mathematics Morocco

Nour-Eddin EL FAOUZI

Head of Unit | Transport and Traffic Engineering Laboratory (LICIT) Université de Lyon | IFSTTAR and ENTPE

Lidia Z. Filus

Professor and Chair of Mathematics Mathematics Department Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA

Jesus Enrique Garcia

University of Campinas Brazil

Enrico Guastaldi

Head of Applied and Environmental Laboratory, CGT Via Vetri Vecchi 34, 52027 - San Giovanni Valdarno - Arezzo – Italy

Shezhana Hristova

Plovdiv University Department of Applied Mathematics and Modeling Plovdiv, BULGARIA

N. Mukhopadhyaya,

University of Connecticut, USA

Mikhail Moklyachuk

Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska st.64, Kyiv 01601, Ukraine

Donal O'Regan,

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

J.S.Rao

University of California, Santa Barbara, USA

George G. Roussas University of California ,Davis California,USA

> Naseer Shahzad Department of Mathematics King Abdulaziz University Jeddah, Saudi Arabia

V.A. Gonzalez-Lopez

University of Campinas Brazil

Sencer Yeralan

University of Florida, Gainesville, Florida, USA. Yasar University, Izmir, Turkey

Xiaowen Zhou Department of Mathematics and Statistics Concordia University Canada

A.Ganesh

Asst.Professor, Department of Mathematics, RUSA Unit Project Coordinator, Govt. Arts and Science College, Hosur-635 109, Tamil Nadu, India

D. Jaya Shree

Department of Mathematics, Govt. Arts and Science College, Hosur-635 109, Tamil Nadu, India

MuK Publications & Distributions

F-2562, Palam Vihar Gurgaon-122017 (Haryana) E-mail: mukpublications@gmail.com https://www.mukpublications.com

Stochastic Modeling & Applications

Special Issue

On

Recent Research on Management, Applied Sciences and Technology

Stochastic Modeling & Applications

Vol. 26 No. 3 (January – June, Special Issue 2022 Part - 8)

CONTENTS

Rese	earch Papers (Continue)	
155	A Study on Impact of Self Help Group-Bank Linkage Programme on Improvement of the Country's Economy.	1292-1299
	Sonali Chouhan and Dr.Neeta Maheshwari	
156	THE INTERSECTION BETWEEN SKILL DEVELOPMENT AND EMPLOYABILITY: AN ANALYSIS	1300-1310
	Madhuri Aggarwal, Dr. Arun Sharma, Dr. Smiti Jhajj	
157	Distributed Association Privacy Preserving with Vertically Partitioned HER	1311-1319
	Mrs. B. Backiyalakshmi, Dr. M.Rajakumar	
158	STUDY ON THE STABLE EFFICIENCY FOR ORGANIC SOLAR CELL AT AMBIENT	1320-1325
	Gunjan, Dr. Om Prakash Chaudhary	
159	SECURITY ISSUES IN BIG DATA ANALYTICS AND ITS SOLUTION BASED ON INTEGRATED CRYPTOGRAPHIC ALGORITHM	1326-1339
	Mrs. P.Punithalakshmi, Dr. M.Rajakumar	
160	Growth Inhibitory Activity of Purified Phenolic Compounds from the Bark of Acacia nilotica to Control Spodoptera litura	1340-1353
	Dr. Swati Gautam, Dr. Satwinder Kaur Sohal, Dr. Samiksha	
161	Augmented reality in Higher education in India	1354-1363
	Sukumar Samanta, Dr. Chander Prabha	
162	Different learning styles as the method of addressing individual child requirements	1364-1373
	Sukumar Samanta, Dr. Chander Prabha	
163	A study of composite based on BiFeO ₃ and BaTiO ₃ systems structural, dielectric, and magnetic properties	1374-1381
	Dharmendra Mewada and Rajesh Kumar Katare	
164	Simplified Facial Image Retrieval Process Using Multi Similarity Measurements	1382-1386
	Ashwini Somnathe, Manisha Jangale	
165	Organizational learning and Innovation for Organizational Development	1387-1395
	Suman Baxla, Dr. Rohita kumar Mishra	
166	Forecasting: Crimes against Women in India	1396-1410
	K.Dheenathayalan, K.K. Savitha	
167	UPPER BOUND OF SECOND HANKEL DETERMINANT OF ANALYTIC FUNCTIONS CONSTRUCTED USING COMPOSITION	1411-1414
	Gurmeet Singh, Gourav Saini	

168	A study of composite based on BiFeO ₃ and BaTiO ₃ systems structural, dielectric, and magnetic properties	1415-1422
	Dharmendra Mewada and Rajesh Kumar Katare	
169	Cooperative Caching Schemes in MANETs and VANETs: A Comparative Analysis	1423-1429
	Nisha Wadhawan, Dr. Y.S Shishodia , Dr. Meenu dave	
170	A STUDY TO ANALYZE THE EFFECT OF CONSOLIDATION ON PROSERITY OF THE COMPANY	1430-1438
	Prayank Sharma, Mr. Manish Prasad. Dr. Sandeep Verm, Dr. Supriya Awasthi	
171	Face Integer Cordial Labeling of Some Wheel Related Graphs	1439-1457
	U. M. Prajapati ¹ , P. A. Patel ²	
172	Cost-volume-profit analysis of fish farming in Barpeta district	1458-1463
	Abdur Rafique Choudhury ¹ and Dr. Padmalochan Hazarika ²	
173	FEKETE-SZEGÖ INEQUALITY FOR ASYMPTOTIC SUBCLASSES OF FAMILY OF ANALYTIC FUNCTIONS	1464-1468
	MD AMINUL HOQUE, GURMEET SINGH	
174	Classifiers predictive performance analysis based on Feature Selection using Diabetes Biomedical Dataset	1469-1477
	SAKTI CHARAN PANDA, GYANA PRAKASH BHUYAN, PRASANTA KUMAR MISHRA	
175	Cooperative Caching Schemes in MANETs and VANETs: A Comparative Analysis	1478-1484
	Nisha Wadhawan, Dr. Y.S Shishodia, Dr. Meenu Dave	
176	PREDICTING ECONOMIC SUSTAINABILITY OF RURAL AREAS USING DECISION TREE MODEL - A STUDY IN SELECT REGIONS OF SOUTHERN INDIA	1485-1496
	K J SRINIVAS, DR B SAI GIRIDHAR	
177	A STUDY TO FIND THE ASSOCIATION BETWEEN ACCURACY OF ESTIMATED COST AND PROJECT MANAGEMENT ACTIVITIES FOR PROPOSED SOFTWARE DEVELOPMENT	1497-1504
	Dr. Shubhangi Potdar, Dr. Mahesh P. Potdar, Mokshada Mahesh Potdar	
178	Self-Compacting Concrete Filled Steel Tubes at Ambient and Elevated Temperatures: A Qualitative Analysis	1505-1514
	Athiq Ulla Khan, Dr. N S Kumar, Chethan Kumar S, Ghazala Anjum	
179	USE OF IRON SLAG AS PARTIAL REPLACEMENT MATERIAL FOR RIVER SAND IN CONCRETE (Split tensile strength)	1515-1521
	Varun bhati	
180	USE OF IRON SLAG AS PARTIAL REPLACEMENT MATERIAL FOR RIVER SAND IN CONCRETE (Compressive strength)	1522-1528
	Varun bhati	
181	PURSUING EFFECTIVE MENTORSHIP IN MANAGEMENT EDUCATION	1529-1536
	Dr. Vidyut Deshpande, Dr. Prashant Phule, Dr. Vrinda Pandit	
182	The Modernization and Digitalization of Indian Higher Education with reference to National Educational Policy Dynamics, 2020	1537-1545
	Dr. Zuleika Homavazir, Dr. Malcolm Homavazir	

183	IMPACT OF MID-DAY MEAL SCHEME ON PROMOTING ENROLMENT: A PERSPECTIVE VIEW	1546-1559
	MEENAKSHI SINGH, DR RAJAN MISHRA	
184	PERCEPTION OF TEACHERS AND STUDENTS REGARDING MID- DAY MEAL SCHEME: A PERSPECTIVE VIEW	1560-1567
	MEENAKSHI SINGH, DR RAJAN MISHRA	
185	USE OF STEEL SLAG AS PARTIAL REPLACEMENT MATERIAL FOR RIVER SAND IN CONCRETE (Split tensile strength)	1568-1575
	Varun bhati	
186	USE OF STEEL SLAG AS PARTIAL REPLACEMENT MATERIAL FOR RIVER SAND IN CONCRETE (Compressive strength)	1576-1581
	Varun bhati	
187	ANALYSIS OF PERFORMANCE OF EVACUATED SOLAR TUBE COLLECTOR	1582-1590
	Mr. Rajkumar L. Mankar, Dr Keste A. A, Dr.Galhe Dattatray S, Dr.Ubale Amol B	
188	ANALYSIS ON USING NON-EDIBLE OIL TO IMPROVE THE PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR	1591-1599
	Mr. Rajkumar L. Mankar, Dr Keste A. A, Dr.Galhe Dattatray S, Dr.Ubale Amol B	
189	Synthesis and characterisation of $Nd_{1.95}Sr_{0.05}FeO_{4+\delta}$ cathode material for intermediate temperature solid oxide fuel cell	1600-1604

J. D. Punde

Revised: 10th May 2022

Accepted: 8th June 2022

$Synthesis and characterisation of Nd_{1.95}Sr_{0.05}FeO_{4+\delta} cathode material for intermediate temperature solid oxide fuel cell$

J. D. Punde

Department of Physics, S. S. Girls' College, Gondia - 441 601, India.

E-mail: jagendrapund@gmail.com

Abstract

Intermediate temperature solid oxide fuel cell (IT-SOFC) cathode $Nd_{1.95}Sr_{0.05}FeO_{4+\delta}was$ prepared by combustion method &sintered at 1273 *K* for 4 *h*. It is mixed ionic-electronic conducting (MIEC) oxides and has K_2NiF_4 -type structure. The prepared samples were characterized using X-ray powder diffraction (XRD), microhardness testing and four-probe dc conductivity. A close scrutiny of XRD reveals that the prepared solid solutions of cathode sintered at 1273 *K* are single-phase and the *d*-values matches well with the standard JCPDS data corresponding to pure Nd₂FeO₄ with small deviation. The dc conductivity results showed the conductivity is increased after Sr doping.

Keywords: Intermediate temperature solid oxide fuel cell, mixed ionic-electronic conductor (MIEC), combustion method, K_2NiF_4 -type structure, cathode.

Introduction

The solid oxide fuel cells (SOFCs) is a electrochemical device, produce electricity and heat directly from gaseous fuels through an oxidation process with high efficiency and low pollution. The operating temperature of SOFC is high ($800^{\circ}C - 1000^{\circ}C$). It is desirable to lower the operating temperature of solid oxide fuel cells from 1000°C to below 800°C. The lower operating temperature would solve various problems related to the high temperature operation, like densification of electrodes, formation of an insulating layer at the electrode/electrolyte interface by interdiffusion, and crack formation from stress caused by large differences within the thermal expansion coefficients of the cell components. Besides, low operating temperature will extend the material selection range for cell components such as the interconnect and cell housing. The reduction of operation temperature is often achieved either by thinning the electrolyte layer, or by using highly conductive electrolytes [1-5].

When a cell is operated at temperatures below 800°C with thinning the electrolytes, the cathode becomes critical for the fuel cell performance since the activation energy for cathodic reaction is very large. Therefore, many efforts are focused on decreasing the operating temperature without lowering the cell efficiency. The most promising cathode materials are mixed ionic electronic conducting (MIEC) oxides. Most of the studies on MIEC cathodes have focused on perovskites [6,7].

Now a days, a K_2 NiF₄ family with a perovskite-related structure, has attracted more attention for use as MIEC cathodes due to favourable characteristics. The MIECs with K_2 NiF₄-type oxides structure exhibit anisotropic electrical transport property due to their specific crystallography characters. The structure of K_2 NiF₄-type oxides, as an example of A₂BO₄ (A-rare earth, alkaline-earth; B-transition metal), consists of the stacking of perovskite *ABO*₃ layers alternating with rock salt *AO* layers along the *c*-direction [8]. A₂BO₄ compounds exhibit high electronic conductivity. Also, possibility of forming solid solutions with mixed valence of the *B*-site provides good scope to tailor the physical-chemical properties. In addition, a high concentration of oxygen interstitials offers rapid oxygen transport through crystal, eventually a scope for developing a new type of MIEC cathode materials [9].

Ln₂FeO₄ (Ln= La, Ba) material is also the same kind of compound possess the same structure and contain excess oxygen. Sr doping in Ba₂FeO₄ could improve its cathodic properties. The single-phase K₂NiF₄-type structures were obtained for Ba_{2x}Sr_xFeO₄ over the composition range of $0.5 \le x \le 1.0$ for Ba [10]. Literature revel that there has not hitherto been any report on Nd metal in the A site of Ln_{2x}Sr_xFeO₄ materials. Therefore,

the study of new potential materials of the type $Nd_{2x}Sr_xFeO_4$ as cathode materials for IT-SOFCs is very interesting. In the present study, materials of the $Nd_{1.95}Sr_{0.05}FeO_{4+\delta}$ have been synthesized and characterized.

Experimental

The initial reagents neodymium acetate, strontium acetate and iron acetate, used were procured from Aldrich Chemicals (USA) with purity > 99.9 %. All these reagents were dried at 393 *K* for 24 *h* in order to remove the traces of moisture present. The respective requisite reagents in stoichiometric ratio were dissolved in the double distilled deionised water separately and then mixed together in a single corning flask. The homogeneous aqueous solution was then heated by using hot plate. The residue obtained was then pulverized to get them in the form of powders. The pellets of diameter and thickness 13 *mm* and 1-2 *mm*, respectively, were obtained by uniaxially compressing ground powder at 3 *tons* cm⁻² pressure with the help of Specac (UK) stainless steel die-punch and hydraulic press. The resulting pellets were initially calcined at 973 *K* for 4 *h* in an electric furnace. Subsequently, they were crushed to obtained fine powder and repelletized of diameter and thickness 9 *mm* and 1-2 *mm*, respectively. The pellets were finally sintered at 1273 *K* for 4 *h* and allowed to cool in the furnace to room temperature.

The prepared sample was subjected to structural characterization by X-ray powder diffraction (XRD) with a PANalyticalX'pert PRO (Philips, the Netherlands) instrument that employed CuK_{α} radiation. A curved graphite crystal was used as a monochromator. The X-ray diffraction measurement were carried out in a 2θ range from 10 to 80° with a step size and time per step of 0.020° and 5 *s*, respectively. The sintered densities of the sample were determined using Archimedes' principle with the help of Mettler XS105 dual range monopan balance with density kit attachment and built-in density measurement software. The micro-hardness of the sample was measured by the Vickers indentation technique (HMV2 Series Shimadzu micro–Hardness Tester, Japan).

A thin platinum film on both flat surfaces of the sintered pellet was obtained by d.c. sputtering and resulted in good ohmic contacts for d.c. electrical conductivity measurements. Prior to the conductivity measurement, the sample was spring-loaded in a ceramic cell holder (Amel, Italy) and heated to 973 *K* for 1 *h* to homogenize the charge carriers. The resistance during the cooling cycle was measured as a function of temperature using the four-probe method with a computer-controlled Keithley 6221 current source and a 2182*A* nanovoltmeter in delta mode. The temperature of the sample during the measurement was controlled with an accuracy of $\pm 1 K$ with a Eurotherm 2216e temperature controller. The tip of a calibrated thermocouple was kept in the vicinity of the sample to measure its actual temperature.

Result and discussion

X-ray powder diffraction

The X-ray powder diffraction (XRD) patterns of $Nd_{1.95}Sr_{0.05}FeO_{4+\delta}$ is shown in the Fig. 1. All the diffracted lines are broader than usually observed for good crystalline solids. The broadening of diffracted lines is attributed to the superfine crystallite nature of material. A careful look at the Fig. 1 revealed close matching of all the characteristic diffracted lines with the JCPDS (joint committee for powder diffracted line corresponding to all the characteristic diffracted lines of pure tetragonal Nd₂FeO₄. Absence of diffracted line corresponding to either reagents or any intermediate compound confirmed the formation of single-phase tetragonal Nd_{1.95}Sr_{0.05}FeO_{4+ δ}solid solution. In order to ascertain the formation of solid solution and its consequence on host lattice structure, the lattice cell constants of the samples under study were determined using Unitcell, a computer software [11]. The lattice constant *a* matched well with the values *a* = 0.376*nm* (of Nd₂FeO₄) but the value of lattice constant *c* increase. Since the ionic radii of Nd³⁺ is (11.63 *nm*) smaller than that of Sr²⁺ (13.1 *nm*) [12], partial replacement of former by latter resulted in lattice expansion of host Nd₂FeO₄. The lattice distortion along *c*-axis due to partial replacement of host by smaller cation in *K*₂*NiF*₄-type lattice has been reported in literature [13, 14].

Fig. 1: The XRD patterns of Nd_{1.95}Sr_{0.05}FeO₄₊₈

Table 1: A lattice cell constants (a, c and v), crystallite size (C_s), crystal lattice strain (S₁), sinter density (ρ) and microhardness number (HV) of Nd_{1.95}Sr_{0.05}FeO_{4+ δ}.

Composition	a (nm)	с (nm)	v (nm^3)	Cs (nm)	S ₁ (%)	ρ (%)	HV
JCPDS	0.378	1.310		-		-	
$Nd_{1.95}Sr_{0.05}FeO_{4+\delta}$	0.376	1.315	0.186	185.3	0.12	81.6	302

The crystallite size of composition under study is 185.3 determined using X'pertHighscore plus software based on the following expression:

$$C_{\rm s} = \frac{0.9\lambda}{\beta\cos\theta_{\rm B}},\tag{1}$$

where $C_{s,\lambda}$, and θ_B are thickness of crystallite, X-ray wavelength and Bragg's angle, respectively. Here, β was determined by:

$$\beta^2 = \beta_m^2 - \beta_s^2, \tag{2}$$

where, β_m and β_s were the measured and the standard full width of half maxima, FWHM, of diffracted line, respectively. The β_s was estimated from the XRD pattern obtained by running the experiment on a standard silicon sample provided by PANalytical, Netherlands.

The sintered density (ρ) of the Nd_{1.95}Sr_{0.05}FeO_{4+ δ} determined using the Archimedes principle, and it is 81.6. The hardness number (*HV*) of the given sample is 302.

dc conductivity

The variation of dc conductivity with temperature of the $Nd_{1.95}Sr_{0.05}FeO_{4+\delta}$ under study is shown in Fig. 2. The dc conductivity taking into account electronic contribution of MIEC cathode is measured using four-probe method.

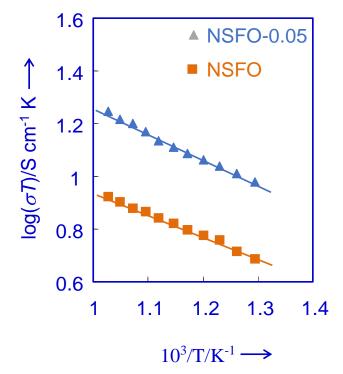


Fig. 2: Temperature Dependant dc conductivity of $Nd_{1.95}Sr_{0.05}FeO_{4+\delta}$

Given sample follows Arrhenius law within the entire measuring temperature range as follows,

$$\sigma T = (\sigma T)_0 \exp\left(\frac{-E_a}{kT}\right),\tag{3}$$

where $(\sigma T)_{0,k}$, T and E_{a} are pre-exponential factor, Boltzmann constant, absolute temperature and activation energy, respectively. It is clear from the figure that, the conductivity increases due to Sr content in the sample.

Conclusions

The Nd_{1.65}Sr_{0.35}NiO_{4+ δ} solid solution prepared by combustion synthesis.XRD confirms the formation of single phase Nd_{1.95}Sr_{0.05}FeO_{4+ δ} It is crystallizing with the tetragonal *K*₂*NiF*₄- type structure. Temperature dependent dc conductivity fallow the Arrhenius law. Since the Sr doped NdFeO₄ less attended as cathode for IT-SOFC therefore,Nd_{1.95}Sr_{0.05}FeO_{4+ δ}may be potential candidate for IT-SOFC cathode.

Acknowledgements

The authors are thankful to Materials Science Research Laboratory, Department of Physics, RTM, Nagpur University, Nagpur.

References

- 1. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L.J. Gauckler, Solid State Ionics 131 (2000) 79 96.
- 2. M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129 (2000) 63 94.
- 3. C.R. Xia, M.L. Liu, J. Am. Ceram. Soc. 84 (8) (2001) 1903 1905.
- 4. C.R. Xia, F.L. Chen, M.L. Liu, Electrochem. Solid-State Lett. 4 (5) (2001) A52 A54.
- 5. C.R. Xia, M.L. Liu, Solid State Ionics 144 (2001) 249 255.
- 6. Z.Shao, S. M.Haile (2004) Nature 431:170–173
- 7. A.Esquirol, N. P.Brandon, J. A.Kilner, M.Mogensen (2004) J Electrochem Soc 151:A1847–A1855
- E. N. Naumovich, M. V. Patrakeev, V. V. Kharton, A. A. Yaremechenko, D. I. Logvinovich, F. M. B. Marques, *Solid State Sci.* 7 (2005) 1353/ H. Zhao, Q. Li, L. Sun, *Sci China Chem* 54 (2011) 898–910.
- 9. H. Zhao, Q. Li, L. Sun, Sci China Chem 54 (2011) 898–910.
- 10. C.Jin, J.Liu, Y. H.Zhang, J.Sui, W. M.Guo (2008) J Power Sources 182:482-488
- 11. T.J.B. Holland, S.A.T. Redfern, Miner. Mag. 61 (1997) 65-67.
- 12. R.D. Shannon, Acta. Crys., A32 (1976) 751-767.
- 13. A.P. Khandale, S.S. Bhoga, J. Power Sources, 195 (2010) 7974-7982.
- 14. V.I. Voronin, A.E. Kar'kin, B.N. Goshchitski, Phys. Solid State 40 (2) (1998) 157-162.